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The effects of phase interaction are considered for the hydrodynamic 
instability of a flowing dispersion, and a model is proposed for pre- 
mature onset of turbulence. 

A disperse phase can stabilize the laminar flow of a suspension or 
aerosol by impeding the growth of neutral perturbations and the onset 
of turbulent conditions. This stabilizing action is seen also in the shift 
of the curves for neutral stability towards higher Reynolds number R 
[1,2] and in the occurrence of additional dissipation of pulsation energy 
as a resutt of phase interaction [3,4]. 

These conclusions from the theory are closely confirmed by tests 
on the motion of finely divided or neatly equal-density systems, where 
turbulence starts at R. higher than those for the homogeneous dispersion 
medium, However, systems with coarser particles and substantial den- 
sity differences show the converse effect (lower R,). This has been 
observed [5] for a liquid containing sand in vertical pipes, where R. 
was only t60-200 instead of 2300. Similar results have been obtained 
with oil in sands [6]. Loss of laminar flow at low R. is characteristic 
also of emulsions having disperse material less dense than the dispersion 
medium, e.g.,  water-oil emulsions of very low concentration [7]. 
The quantity R. is not an invariant characteristic of the type of motion 
but is dependent on the physical parameters of the phases and the 
concentration. 

This indicates that a different mechanism accompanies the usual 
mechanism for toss of hydrodynamic stability (from inertial effects, 
undamped shear waves, and secondary flows); energy is transferred to 
pulsations and causes premature onset of turbulence. This energy trans- 
fer must be due to interaction between phases, which produces differ- 
ences between the local speeds of liquid and particles; it does not require 
shear in order to arise. A preliminary analysis of early turbulence thus 
can be based on the stability of a one-dimensional homogeneous two- 
phase flow. 

w T h e  m o t i o n  i s  d e s c r i b e d  v i a  a m o d e l  w i t h  two 
i n t e r p e n e t r a t i n g  c o n t i n u o u s  m e d i a  [3],  w h i c h  i s  s u p -  
p l e m e n t e d  b y  a n  e x p r e s s i o n  f o r  t h e  p h a s e - i n t e r a c t i o n  

f o r c e s  i m p l i e d  b y  [8]. T h i s  e x p r e s s i o n  t a k e s  a c c o u n t  

of v i s c o u s  r e s i s t a n c e  and  b u o y a n c y ,  a s  w e l l  a s  f o r c e s  

due  to t h e  e x c e s s  p r e s s u r e  g r a d i e n t  a n d t h e  a c c e l e r a t i o n  

of  t h e  l i q u i d  in  t r a n s i e n t  m o t i o n  of t h e  p a r t i c l e s .  T h e s e  

f o r c e s  a r e  e s p e c i a l l y  i m p o r t a n t  w h e n  t h e  two m e d i a  
a r e  n e a r l y  e q u a l  in  d e n s i t y .  We  a s s u m e  t h a t  t h e  f o r c e  

of  v i s c o u s  i n t e r a c t i o n  i s  l i n e a r  in  t h e  r e l a t i v e  v e l o c i t y  

o f  t h e  p h a s e s  and  c a n  b e  r e p r e s e n t e d  a s  a p r o d u c t  of  

t h e  S t o k e s  f o r c e  and  a d e f i n i t e  f u n c t i o n  of  t h e  A r c h i -  
m e d e s  n u m b e r  A and  t h e  v o l u m e  c o n c e n t r a t i o n  p. 

T h e  e q u a t i o n s  f o r  c o n s e r v a t i o n  of t h e  m a s s  and  

m o m e n t u m  of  t h e  p h a s e s  a r e  

Op 0p 
- -  o-F + d i v [ ( l - - p ) v ]  = O, ~ + d iv(pw)  = O, 

+ 0 - P) + t,,PJ + 0 - p) ( v v )  + 

- -  - -  V P  + ~ a )  + x g  - -  ~ p K  ( v  - -  w ) ,  

= - -  f V.q + I-~V*(2) + ( l  - -  u ) g  + ~ K ( v  - -  w), 
p p 

9~0 dl 
~ =  '2a"&' U =  ~ [ ,  K = K(p ,  A).  (1.11} 

H e r e  w and  v a r e  t h e  v e l o c i t i e s  of t h e  s o l i d  and  

l i q u i d  p h a s e s ;  p ,  v(i)  and  q,, ~.(2) a r e  t h e  t e n s o r s  f o r  t h e  

p r e s s u r e  and  v i s c o u s  s t r e s s e s  in  t h e  l i q u i d  anc~ d i s -  

p e r s e d  p h a s e s ,  a s  r e f e r r e d  to t h e  d e n s i t y  d e of  t h e  

p a r t i c l e s ;  d t i s  t h e  d e n s i t y  of  t h e  l i qu id ;  #0 i s  t h e  v i s -  
c o s i t y  of  t h e  l i qu id ;  a i s  t h e  r a d i u s  of  a ( s p h e r i c a l  a 

p a r t i c l e ;  g i s  t h e  a c c e l e r a t i o n  d u e  to g r a v i t y ;  K(p,  A) 

i s  a f u n c t i o n  t h a t  t a k e s  a c c o u n t  of t h e  i n c r e a s e  in  t h e  
e f f e c t i v e  v i s c o u s  f o r c e  in  h i n d e r e d  f low a r o u n d  t h e  

p a r t i c l e s ;  and  ~ = ~(p) i s  t h e  a d j o i n t - m a s s  c o e f f i c i e n t  
-< 1 / 2 ) .  We a s s u m e  t h a t  T (1) and  ~(2) a r e  e x p r e s s e d  in  

t e r m s  of  t h e  v e l o c i t y  g r a d i e n t s  in  t he  m a n n e r  u s u a l  

f o r  t h e  h y d r o d y n a m i c s  of a v i s c o u s  l i qu id .  

A o n e - d i m e n s i o n a l  u n i f o r m  f low i s  d e s c r i b e d  by  t h e  

f o l l o w i n g  r e l a t i o n s  ( the  a x i s  x = x 1 i s  o p p o s i t e  in  s e n s e  

to t h e  v e c t o r  g): 

w~ = 0, vi = u6~l, p = coast  - -  (• - -  ~pKu)x,~ 

( t - - u )  g 2 a ~ ( d 2 - d z )  g . 
q = coast~ U = - -  

~K 9 ~0K (1.2) 

E q u a t i o n s  (1.1) t a k e  t h e  f o l l o w i n g  f o r m  w h e n  l i n -  
e a r i z e d  w i t h  r e s p e c t  to  s m a l l  p e r t u r b a t i o n s  in  t h e  

q u a n t i t i e s  ( d e n o t e d  b y  a s t e r i s k s )  r e l a t i v e  to  t h e  s t e a d y  

s t a t e  of  (1 .2) :  

0 , 

0 , 

- -  V P *  -~- ~(1)/~ Fi* -@ T(1)V (div v ' )  - -  
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[o  + + - o  + = 

t Oq (1) 09" - ~ w ,  + 
p Op Ox~ - I - _ _  "* 

~(2) , ~ O K  . ,, 
+ ~ U [div w*) + ~Kui*  -7 P ~ ollup" 

( o  u o )  �9 - ~ - +  ~ p * = ( l - - p ) d i v v ,  

op* v" - -  w* (1.3) o--/- - -  ~ 9 d i v w * ,  u* 
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The p r e s s u r e  t ensor  for  the liquid is a s sumed  to be 
spher ica l ,  while the equi l ibr ium no rma l  s t r e s s e s  of 
the solid vary  with d i rec t ion (q(t) ~ q(2) ==q(3)), as fo l -  
lows f r o m  [9, 10]. Here  g(i) and ~(i) a r e  the shear  
and bulk v i scos i t i e s  of the phases  respec t ive ly ,  as 
r e f e r r e d  to d 2. We put 

{p*, p*, v*, w*} = {P, B, V, W} e~(~'+~). 

These  re la t ions  a r e  subst i tuted into (1.3), and V and 
W a re  el iminated f r o m  the sy s t em of a lgebra ic  equa-  
t ions to give 

ik2 P + ( r lkx + sik~) R = O, ( s2k~ + r,fl O R = O, 

r = ~ l ) k l ~  t ( o + u k ,  o bl)  _L 
i "  l - - p  --  ~ \-T-Z-7 al + 7 ' 

oK ikl 0q (1) + ~ N u  p ap 

~(2) (0 

' '-(-N-P' 

al = ~tO)k ~ + ~pK + 

+ i { [ p q - x ( l - - p ) q -  ~xp]m + x( i - -p)uk~},  

a~ = ~K + i ( t  + ~z)o), b, = ~p K + i~xp(o + uk~), 

t(2) k~ 
b~=-~-  - l - ~ K + i [ ( l + ~ u ) o ) 4 -  ~• (1.4) 

The f i r s t  equation in (1.4) def ines F,  while the s e c -  
ond is the c h a r a c t e r i s t i c  equation of the sys tem and 
can be wri t ten  as  

(Co +iDo)m ~ +(C~ +iD1)(o +C~ +iD~  = 0 ,  

C O = O, D O = I +~•  

c ~  = ~K + p-~ (t - -  p) (~(~) + 7(~))~ ~ 

= (o + ~• I c~ = ~p [ 0 - - P ) ~  + K] u, D 1  

= - -  2 Oq(l~ ) k~Oq(2)~ 
D~ - - ( t  p) (k~ op + op 1" (1,5) 

The stabil i ty condit ions (absence of roo t s  co in (1.5) 
having negative imag ina ry  par ts)  take the fo rm 

DoC~ > O, (D~Cx --  DoCk) C~ --  D~C'~I > 0, (1.6) 

The f i r s t  condition in (1.6) is a lways met ,  while the 
second gives 

~ok ~ + ~x~k ~ + o~ > 0 

a0 = ~ (~(~) + 7(~))( k ~ Oqm ~ oq(~) 
. , - aT+~ . . -~p ) '  

a ,  = ~(t - -  p)(~(~), 7(~)) x 

•  ~ p -g~-~+ 

+ ( p  + ~x){K ( i - -  0 ) ~ ) ~ ]  ~(~) 

(1.7) 

One-dimensional perturbations (k 2 = 0) are the most 

unstable if (a/Sp)q > 0, while perturbations with 

large k 2 are so ff the converse applies. If (8/0p)q(i) > 

> 0, loss of stability occurs first in respect of pertur- 

bations with k I ~ 0. The motion is unstable if q0) de- 
re o "- , (1) creases as p increases, becausethe ots f@/0p~q = 

= 0 (close to the concentrations p, of a close-packed 

system [9, i0]) are usually much greater s the roots 

of 

~• = (i + ~• / no. 

It is  t he r e fo re  suff icient  to examine  the stabil i ty with 
r e s p e c t  to plane waves  with k i ~ 0. Then (1.7) gives  
us an approximate  stabil i ty condition: 

ip@(l)ap (t--P)/alnK~--~p +l-----~i )x  

x [ ( i  . ~ .  o I . K  
(1.8) 

It is clear that the stability is not dependent on the 

viscosities of the two phases. 
w We need to know how K and q(i) vary with p and 

the other parameters in order to analyze (1.7) or (1.8). 

We can use for K the relation [9] 

K ~ (l -- p )~  [i + 0.033 (i - -  p)2.a~5 A'h], 

8g aa ,z iz  
A = ~ ~i~"~ -- dl). (2.1) 

!t is  difficult to der ive  express ions  for  the q(i) be -  
cause  the suspended p a r t i c l e s  move  randomly  in the 
v iscous  liquid; only approximate  express ions  a re  
avai lable,  which a r e  sui table when the c h a r a c t e r i s t i c  
time of interaction between the particles is much less 
than the relaxation time for the velocity of the particles 
relative to the liquid, while the interactions themselves 
are of short range [9, 10]. These conditions are usually 
obeyed by particles suspended in a gas, but only ap- 
proximately for liquid suspensions. 

It has been assumed [I0] that a Markov process 
describes the motion of a system of particles in phase 
space, which gives the following expression for the 
normal stress of the dispersed phase in the direction 
of the flow: 

4 m q  ~ , -  2 9 1 1 = - - P 0 - - ~ s m ,  P 0 = n 0 ( l e Y ) ,  

64~"- \ = ) ' =m~ '* '  

D (0 lnK I )2 
= ~ (9) u ~, 0 =a-m\ a,~ i l - p  

, ( p )  = <(~o)~>, z = z(p).  (a.z) 

Here  0 is the mean  energy  of the i so t ropic  sma l l -  
sca le  pulsa t ions  of the pa r t i c l e s ,  B is a coeff icient  
defining the diffusion tensor  in pu lsa t ion-ve loc i ty  space,  
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((SO)) i s  t h e  s c a l e  o f  t h e  c o n c e n t r a t i o n  f l u c t u a t i o n s ,  

D i s  a n u m e r i c a l  f a c t o r  l e f t  u n d e f i n e d  i n  t h e  t h e o r y  o f  

[10] ,  a n d  X(P) i n d i c a t e s  t h e  i n c r e a s e  i n  t h e  f r e q u e n c y  o f  

b i n a r y  c o l l i s i o n s  ( a l l  c o l l i s i o n s  a r e  b i n a r y  i n  a s y s t e m  

o f  h a r d  s p h e r e s )  r e l a t i v e  to  t h a t  f o r  a s y s t e m  o f  p o i n t  

p a r t i c l e s .  E n s k o g ' s  t h e o r y  o f  d e n s e  g a s e s  [10] g i v e s  

t h e  f o l l o w i n g  r e s u l t  a p p l i c a b l e  to  d i i u t e  s y s t e m s :  

x (p) ~ (t ~- ~*/~ p) (i - 8p)-L p ~ 1. 

F o r  c o n c e n t r a t e d  s y s t e m s  w e  h a v e  a p p r o x i m a t e l y  

t h a t  [9] 

1 - - o '  z =  \--~--,) , ~ 0 . t 2 ~ p ~ p . . ~  4p 

A l s o ,  • i n c r e a s e s  m o n o t o n i c a l l y  w i t h  p a n d  t e n d s  

to  i n f i n i t y  a s  p --* p , .  

I t  f o l l o w s  f r o m  [9] t h a t  

o 2 N O  t ( O V ~ t  
~ ( p ) ~ U p  7 r -  "-U \ o eo /o l  = 

dv~-r (2.3) = 6p2 ( l + Y - -  p y~-p j �9 

F o r  d i l u t e  a n d  c o n c e n t r a t e d  s y s t e m s ,  r e s p e c t i v e l y ,  

w e  g e t  

(p) ~ 6 f  1 - -  1% + 64 p"- a n d  ~; (p) ~ 692 0 - -  ~)~ 
1 -- 8p  q- 2 p  "~ t -- ~"/3 ~ ' 

(2.4)  

A f o r m u l a  h a s  b e e n  d e r i v e d  [9] f o r  0 t h a t  c o i n c i d e s  

w i t h  (2.2)  a p a r t  f r o m  a n u m e r i c a l  f a c t o r ;  c o m p a r i s o n  

g i v e s  D ~ 0 . 2 ,  w h i c h  v a l u e  i s  u s e d  b e l o w .  

T h e n  w e  h a v e  

a s  

d:q(r) = - -  P n  z'~ 0.067 p ( l  + Y (O)) x 

( O l n K  t p)2dou~ 4: - 
x ~ ( p ) ~  0p +i- - 

1~2 ~ g 
0 . 5 7 3 ~  / a l n K  t 4- 

W e  s u b s t i t u t e  (2.5)  i n t o  (1.8) a n d  w r i t e  t h e  c o n d i t i o n  

2 " 5 7 F 0 [ ~  ( O l n K  ~ O p  \ 0p r 1 ~ ) 1  - b  

o O l n K  t e 

p (l - -  pT~-N-  p + (t + 

vd• ~- ~ad A 8• 
F - -  ( l - - x )  gas - -  (t--•  a ' = ~ - ,  ~t:~=O (2.6)  

The neutral curve is thus defined by p and the dimensionless pa- 
rameter F, which is dependent on the parameters of the phases; this 
curve in the region F >0, 0 -< p -< p,  is shown in Fig. 1 (the stability 
region lies above the curve). Instability sets in at a critical value 
F,(p) as I" decreases, and this loss of stability corresponds to increase 
in particle size, decrease in the density ratio, increase in the density 
of the dispersed phase, and reduction in the viscosity of the dispersion 
medium.  All these conclusions are in good general agreement with 
numerous experiments on flow in disperse systems and (especially) the  
fluidized state. Inhomogeneous behavior in a fiuidized bed, for exam~ 
ple, occurs more readily in a bed of large particles supported, by a 
low-viscosity gas than it does in a bed of fine particles fluidized by a 

k ' , , , ,  ~ ) /  I 
I / 4 \ \ /  ~I  I 
k,,:,, c c</  ', 

Fig. I 

liquid of high visocity and density (see [11] for review). Early tur- 
bulence in a dispersion is prevented by similar change in the phase pa- 
rameters [5 -7] .  These effects can thus be related to loss of stability 
with respect to small  perturbations. 

If p ~ Pz and F deviates slightly from the critical value (Fig. i), 

instability occurs first in respect of a planar perturbation wave propa- 
gating along the flow direction, and it is possible for a secondary flow 
with k 2 ~ 0 to occur (stratification of a suspension). Conversely, q(l)(p) 
decreases as p increases for p ~Pz, and instability sets in with respect 
to perturbations having high wave numbers. This is precisely the region 
in which we expect rapid growth of initial perturbations up to the for- 
mation of bubbles filled with pure dispersion medium, e .g . ,  as in an 
inhomogeneously fluidized bed. 

These results correspond to the following physical picture of the 
behavior of perturbations. We assume, as an example,  that a positive 
fluctuation occurs in the system (particle concentration above that in 
the surrounding medium).  The upthrust on a particle from the fluid 
is larger than that on a particle outside the fluctuation [9], so the 
fluctuation begins to move upwards and traps fresh particles, thereby 
increasing in concentration. On the other ha~d, the interaction between 
the randomly moving particles results in an effective pressure in the 
solid; if this pressure increases with the concentration, the fluctuation 
will tend to disperse. These two opposing factors determine the stability 

This explains why all previously published studies of linear stability 
in dispersed systems (e. g.,[12]] have led to the conclusion that such 
a system is unstable for arbitrary values of all physical parameters 
and of the concentration p, which obviously conflicts with experiment.  
The reason is that these studies made no allowance for the pressure 
in the solid as a function of p, and thus for the sole physical factor 
that tends to suppress concentration perturbatiom. 

The value of pt'(Fig. 1) is dependent on F and "~, in general,  
because K in (2.1) is dependent on A, but this dependence is very 
weak. 

We have u -= 0 for a system where the densities are equal, and 
the left sides in (1.7) and (1.8) are zero, which corresponds to neutral 
stability. The stability region changes substantially in character as 
u (and therefore F) decreases (becomes negative,  particles less dense 
than the fluid7. In particular, (1.77 shows that instability can occur 
for small  p, whereas there is stability for large p. The first conclusion 
is in general agreement with experiment [7]. A more detailed study 
of the stability for u < 0 is made difficult by the fact that there is no 
proof that the formulas of ~2 are applicable in this case, and no more 
accurate expressions are known for q(i) for such systems. 

No account was taken [9,10] of momentum transfer by friction 
between solid particles in deducin~ the formulas of w It would be 
expected that this would cause q(U(p) to increase with p in the region 
of p directly adjoining p. , and so near p. there should be an additional 
stability region. Experiment indicates that such a region exists (a 
fluidized bed near the onset of fluidization is homogeneous [1117, 
but it is presently unclear how it should be evaluated theoretically, 
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