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The effects of phase interaction are considered for the hydrodynamic :
instability of a flowing dispersion, and a model is proposed for pre~
mature onset of turbulence, ’

A disperse phase can stabilize the laminar flow of a suspension or
aerosol by impeding the growth of neutral perturbations and the onset
of turtbulent conditions. This stabilizing action is seen also in the shift
of the curves for neutral stability towards higher Reynolds number R
[1,2] and in the occurrence of additional dissipation of pulsation energy
as a result of phase interaction [3,4).

These conclusions from the theory are closely confirmed by tests
on the motion of finely divided or nearly equal-density systems, where
turbulence starts at R_ higher than those for the homogeneous dispersion
medium. However, systeins with coarser particles and substantial den-
sity differences show. the converse effect (lower R*). This has been
observed (5] for a liquid containing sand in vertical pipes, where R,
was only 150-200 instead of 2300. Similar resulis have been obtained
with oil in sands [6]. Loss of laminar flow at low R is characteristic
also of emulsions having disperse material less dense than the dispersion
medium, e.g., water-oil emulsions of very low concentration [7].

The quantity R, is not an invariant characteristic of the type of motion
but is dependent on the physical parameters of the phases and the
concentration.

This indicates that a different mechanism accompanies the usual
mechanism for lass of hydrodynamic stability (from inertial effects,
undamped shear waves, and secondary flows); energy is transferred to
pulsations and causes premature onset of turbulence. This energy trans-
fer must be due to interaction between phases, which produces differ-
ences between the local speeds of liquid and particles; it does not require
shear in order to arise. A preliminary analysis of early turbulence thus
can be based on the stability of a one-dimensional homogeneous two-
phase flow.

§1. The motion is described via a model with two
interpenetrating continuous media [3], which is sup-
plemented by an expression for the phase-interaction
forces implied by [8]. This expression takes account
of viscous registance and buoyancy, as well as forces
due to the excess pressure gradient andthe acceleration

of the liquid in transient motion of the particles. These

forces are especially important when the two media
are nearly equal in density., We assume that the force
of viscous interaction is linear in the relative velocity
of the phases and can be represented as a product of
the Stokes force and a definite function of the Archi-
medes number A and the volume concentration p,

The equations for conservation of the mass and
momentum of the phases are

— & pdivi(l—p)vI=0,  E 4 diviow) =0,

{lo+%(1 —p) + Exp] 5+ %(1 —p) (V) +
+ (1 -+ B)p(w)} v — Bxp [TaaT + V)| w =
== Vp+ V¥ +xg —BpK (v —w),

252

[(1+ 80 5+ (%v9) + x (v) | w—
— A+ 8|5+ (V)| v=
= — 2 Vg T 4 (1 — %) g + BK (v —w),

P x="2_ K=K, 4).

= a (1.11)

Here w and v are the velocities of the solid and
quliid phases; p, 1'(1) and g, .,.(2) are the tensors for the
pressure and viscous stresses in the liquid and dis-
persed phases, as referred to the density d, of the
particles; d, is the density of the liquid; p, is the vis-
cosity of the liquid; « is the radius of a (spherical a
particle; g is the acceleration due to gravity; K(p, A)
is a function that takes account of the increase in the
effective viscous force in hindered flow around the
particles; and¢ = £(p) is the adjoint~mass coefficient
¢ = 1/2). We assume that 7!/ and T(z are expressed in
terms of the velocity gradients in the manner usual
for the hydrodynamics of a viscous liquid.

A one-dimensional uniform flow is described by the
following relations (the axis x = x, is opposite in sense
to the vector g):
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¢ = const, u

Equations (1.1) take the following form when lin-
earized with respect to small perturbations in the
quantities (denoted by asterisks) relative to the steady
state of (1.2):
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The pressure tensor for the liquid is assumed to be
spherical, while the equilibrium normal stresses of

the solid vary with direction g = q'® =q®)y, as fol- -

lows from 9, 10]. Here pu{) and D are the shear
and bulk viscosities of the phases respectively, as
referred to d,. We put

{P‘, p*’ v*’ w*} == {P, R, v, W} eilotx)

These relations are substituted into (1.3), and V and
W are eliminated from the system of algebraic egua-
tions to give
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The first equation in (1.4) defines P, while the sec~
ond is the characteristic equation of the system and
can be written as
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The stability conditions {absence of roots w in (1.5)
having negative imaginary parts) take the form
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The first condition in (1.6) is always met, while the
second gives
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One-dimensional perturbations {k, = 0} are the most
unstable if (8/ 8p)q(2> > 0, while perturbations with
large k, are so if the converse applies. I (B/Bp)q(_i) >
> 0, loss of stability occurs first in respect of pertur-
bations with k, ~ 0, The motion is unstable if (1) de-
creases as p increases, because the roots of(8/ap)q(1) =
= 0 (close to the concentrations p, of a close-packed
gsystem [9,10]) are usually much greater than the roois
of

ExK = (1 + Ex)pdK / dp.

1t is therefore sufficient fo examine the stability with
respect to plane waves with ky ~ 0. Then (1.7) gives
us an approximate stability conditiomn:
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It is clear that the stability is not dependent on the
viscosities of the two phases. .

§2. We need to know how K and q{D) vary with p and
the other parameters in order to analyze (1.7) or (1.8).
We can use for K the relation [9]
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it is difficult to derive expressions for the q(i) be~
cause the suspended particles move randomly in the
viscous liquid; only approximate expressions are
available, which are suitable when the characteristic
time of interaction between the particles is much less
than the relaxation time for the velocity of the particles
relative to the liguid, while the interactions themselves
are of short range [9,10]. These conditions are usually
obeyed by particles suspended in a gas, but only ap~
proximately for liquid suspensions.

It has been assumed [10] that a Markov process
describes the motion of a system of particles in phase
space, which gives the following expression for the
normal stress of the dispersed phase in the direction
of the flow:
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Here ¢ is the mean energy of the isotropic small-
scale pulsations of the particles, B is a coefficient
defining the diffusion tensor in pulsation-velocity space,
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{(6p)) is the scale of the concentration fluctuations,

D is a numerical factor left undefined in the theory of
[10], and x(p) indicates the increase in the frequency of
binary collisions (all collisions are binary in a system
of hard spheres) relative to that for a system of point
particles. Enskog's theory of dense gases [10] gives
the following result applicable to dilute systems:

% (p) = (1 =1y p) (1 — 8p)7, P 1
For concentrated systems we have approximately
that [9]
G
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Also, x(p) increases monotonically with p and tends
to infinity as p — p »
1t follows from [9] that
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A formula has been derived [9] for ¢ that coincides
with (2.2) apart from a numerical factor; comparison
gives D = 0.2, which value is used below,

Then we have
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We substitute (2.5) into (1.8) and write the condition
as
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The neutral curve is thus defined by p and the dimensionless pa-
rameter T', which is dependent on the parameters of the phases; this
curve in the region I' >0, 0 = p=p_ is shown in Fig. 1 (the stability
region lies above the curve). Instability sets in at a critical yalue
I (o) as T decreases, and this loss of stability corresponds to increase
in particle size, decrease in the density ratio, increase in the density
of the dispersed phase, and reduction in the viscosity of the dispersion
medium. All these conclusions are in good general agreement with
numerous experiments on flow in disperse systems and (especially) the
fluidized state. Inhomogeneous behavior in a fluidized bed, for exam-
ple, occurs more readily in a bed of large particles supported. by a
low-viscosity gas than it does in a bed of fine particles fluidized by a
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Fig. 1

liquid of high visocity and density (see [11] for review). Early tur-
bulence in a dispersion is prevented by similar change in the phase pa-
rameters [5~7]. These effects can thus be related to loss of stability
with respect to small perturbations.

If p € p; and T deviates slightly from the critical value (Fig. 1),
instability occurs first in respect of a planar perturbation wave propa=
gating along the flow direction, and it is possible for a secondary flow
with ky & 0 to occur (stratification of a suspension). Conversely, q(l)(p)‘

“decreases as p increases for p 3p,, and instability sets in with respect

to perturbations having high wave numbers. This is precisely the region
in which we expect rapid growth of initial perturbations up to the for-
mation of bubbles filled with pure dispersion medium, e.g., asin an
inhomogeneously fluidized bed.

These results correspond to the following physical picture of the
behavior of perturbations. We assume, as an example, that a positive
fluctuation occurs in the system (particle concentration above that in
the surrounding medium). The upthrust on a particle from the fluid
is larger than that on a particle outside the fluctuation [9], so the
fluctuation begins to move upwards and traps fresh particles, thereby
increasing in concentration. On the other hand, the interaction between
the randomly moving particles results in an effective pressure in the
solid; if this pressure increases with the concentration, the fluctuation
will tend to disperse. These two opposing factors determine the stability

This explains why all previously published studies of linear stability
in dispersed systems (e. g.,[12]) have led to the conclusion that such
a system is unstable for arbitrary values of all physical parameters
and of the concentration p, which obviously conflicts with experiment.
The reason is that these studies made no allowance for the pressure
in the solid as a function of p, and thus for the sole physical factor
that tends to suppress concentration perturbations.

The value of py(Fig. 1) is dependent on I and % , in general,
because K in (2.1) is dependent on A, but this dependence is very
weak.

We have u=0 for a system where the densities are equal, and
the left sides in (1.7) and (1.8) are zero, which corresponds to neutral
stability. The stability region changes substantially in character as
u (and therefore I') decreases (becomes negative, particles less dense
than the fluid). In particular, (1.7) shows that instability can occur
for small p, whereas there is stability for large p. The first conclusion
is in general agreement with experiment [7]. A more detailed study
of the stability for u < 0 is made difficult by the fact that there is no
proof that the formulas of §2 are applicable in this case, and no more
accurate expressions are known for q(i) for such systems.

No account was taken [9,10] of momentum transfer by friction
between solid particles in deducing the formulas of §2. It would be
expected that this weuld cause q(1 {p) to increase with pin the region
of p directly adjoining p, ,» and so near p, there should be an additional
stability region. Experiment indicates that such a region exists (a
fluidized bed near the onset of fluidization is homogeneous [11]),
but it is presently unclear how it should be evaluated theoretically.
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